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LElTER TO THE EDITOR 

Critical capacity of constrained perceptrons 

Jorge Kurchan and Eytan Domany 
Department of Electronics, Weizmann Institute of Science, Rehovot 76100, Israel 

Received 25 May 1990 

Abstract. We calculate the critical capacity of a single layer perceptron with interactions 
Ji constrained to take values on a general surface. The critical capacity is expressed in 
terms of a geometrical property of the constraining surface. 

We present a calculation of the critical capacity of perceptrons with general constraints. 
Gardner [ l ]  and Gardner and Demda [2] calculated the critical capacity a , ( K )  as a 
function of the embedding field strength K for the case when the vector of weights J 
can point in all directions; i.e. all normalized vectors that lie on a sphere centred at 
the origin are allowed. Subsequently, a number of calculations addressed the problem 
of capacity of perceptrons constrained in a variety of ways. For example, Amit et a1 
[3] treated the problem of sign-constrained perceptrons, in which Ji > 0 for all i. Kanter 
and Eisenstein [4] generalized this to the case in which a fraction p of the weights is 
sign-constrained, whereas Kurchan and Domany [ 5 ]  evaluated the capacity for J lying 
on a sphere whose centre is shifted from the origin. In this letter we show that all 
possible constraints can be treated in a unified manner, and the critical capacity can 
be cast in terms of an expression that reflects a geometrical property of the constraining 
surface or volume. Our result holds as long as capacity can be obtained from a 
replica-symmetric calculation. 

We consider a perceptron whose vector of weights J, of components 4, is restricted 
to lie on a general surface: 

1JI2 = Nh2(J)  (1) 

where h is a function of the direction J/IJI,  i.e. 

ah 
a4 h(AJ) = h ( J )  p---4=Oo. 

The unconstrained problem [ l ,  23 corresponds to h = 1. It is convenient to introduce 
another function of the direction, defined as p(J/IJ1)  = 1 if a line in the direction of 
J touches or pierces the surface, and p ( J / I J J )  = O  otherwise. 

For simplicity we consider here only such constraining surfaces that are met at 
most once by a ray emanating from the origin. Our treatment can be easily extended 
to more general situations by parametrizing each branch of the surface separately. We 
also assume J has been normalized so that h = O( 1). 
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As in [l] we calculate the average of the logarithm of V, the J-space volume 
occupied by solutions that map cuN independent random patterns 4” = (er, . . . , 6%) 
onto preassigned random 5” = *l,  with embedding strength K :  

In V =  In 1 7 , 0 [ ( J . ~ ’ ’ ) ( ’ / N ” 2 -  K]S 7 - N  P ( J ) n ( J )  dNJ. (3) - I  161 ) 
Here dNJ  = nj dJj, and n ( J )  is a measure on the surface; it may contain, for example, 
the norm of the gradient of the argument of the delta function. We shall assume only 
that it is not exponential in N, i.e. that (In Q)/ N + 0 as N ;CO. 

We now change in (3)  the integration variables from Jj to Jj = J / h ( J ) .  The Jacobian 
of this transformation, easily obtained using (2), is given by d N J  = [ h ( j ) l N  d N j  and 
the integral (3) becomes: 

~n= 1 In I nPo [ ( j - t ” )~ ” /N ’~2 - -  K / h  ( j)] S ( l j l ’  - N ) P  (j)sZ( j )  h ( .f ) d N i  

To calculate (4) we use the replica trick: 

(4) 
( 5 )  

r 

with 

Following [ 11, we now express the 0 functions as integrals and sum their product over 
the 6. This yields exp[aNGo], with 

exp[Go(q,p, Ka)1 

where 

We consider the case K = K ,  = 0 so that the function Go is the same as defined by 
Gardner in [l]. The integral ( 5 )  now reads: 

X n a p 8  ( 1 mp - ja j p  / N 1 exp[ aNGo( q a p  1 Ina < p  dqap - (9) 
Exponentiating the second delta-function in the usual way [ 11, and assuming replica 

symmetry, this integral takes the form 

In writing (10) we implicitly took the saddle point value of an integral over F and q. 
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We rewrite the last factor as: 

a 

F d N t  
2 a # B  

exp (- C ja  j ” )  = exp( - NnF/2) 1 p exp (F’/’ t j ,  -- 

where we have introduced an N-dimensional vector t. Hence, replicas uncouple and 
we get for n + O  

1 
nN 
-lnV“=extr 

with Dtj = ( 2 ~ ) - ’ / ’  dt, and: 

I N  ( r )  = exp[ F’/ ’ ( t  - 3)]??(131’- N)p(j) i2( . f ) (h(f))N dNj.  (14)  I 
The saddle point equation for F reads: 

where we denote 

with 

W ( j )  =exp[F’/’(r* .?)+ N In h(.?)]??(l.fl’- N)p( j ) f l ( j ) .  (17) 
We now write It1 = UN’/’ and express the integral over t in spherical coordinates 

U, o, (U, denotes all the angular variables associated with t ) .  Equation (15) becomes 

F ‘ /2  ( 1 - q ) = ( $ ) N ’ 2 1 d o ,  d a a N  exp[-Nu2/2](cos y )  

where we introduced 

In order to calculate the critical capacity we let q + 1. We first assume and later 
verify [ l ,  31 that in this limit F+ CO. To calculate (cos y) ,  note that it has in both 
numerator and denominator (see (15)-( 17)) integrals that contain 

exp(N(F’/’a cos y+ln  h ( . f ) ) ] .  (20) 
when F + 00, the first term dominates the argument of the exponential, and the integrals 
in (cos y )  are deteryined by a single value of 1 that which maximizes cos y for fixed 
t over the allowed J values. Thus we get 

I F I/ ’  ( l - q ) = ( Z ) ” ’ I  d a a N  exp(-Nu2/2) dw, maxj(cos y ) .  

As is evident already from this expression, the critical capacity depends only on the 
angular distribution of allowed J (and not on IJI). As a trivial consequence of this, 
note that as long as the hypersurface of volume of allowed J encompasses the origin, 
one has CY, = 2 for K = 0. 
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In the large-N limit the function uN exp(-Nu2/2) is sharply peaked at uo=l.  
Evaluating (21) at the saddle point for U, applying Stirling’s formula and the expression 
SN = 2rN12/r(N/2)  for the surface of an N-dimensional unit sphere, we get for the 
limit q +  1, F+CO 

where 

cos Ymax(wr) = maxJ [: - * ~ i12] for s such that p(.?) # 0 (23) 

Clearly, g is a purely geometric object that depends only on the angular distribution 
of the region of allowed .f. Since g is a positive number, we must have F +  CO when 
q + 1,  verifying our assumption. 

The critical capacity a, is obtained by substituting F from (22) into the saddle 
point equation for q :  

This is the same saddle-point equation (for q + 1)  as that obtained by Gardner [ 11, 
but with a,/g2. Hence we get: 

(25) 2 a c = 2 g  . 
In general this result holds only for K =O.  However, if the constraint is such that 

h ( J )  =constant (i.e. J is restricted to a subset of the surface of a sphere centred at 
the origin, as in [3] and [4]), the result 

a c ( K )  = g2a,G(K) (26) 
(where (uF(K)  is the capacity calculated in [l]), holds even for K # 0. 

We demonstrate the usefulness of our general result (25) by calculating a, for a 
few examples. 

( a )  In the trivial case of a surface that encompasses the origin, it is easy to see 
that g = 1 and a, = 2, as in [ 11. 

( b )  Consider the case in which the possible values of J lie on a sphere and are 
within a cone of angle 4 (i.e. the maximum angle between two J is 24) .  The integral 
(22) defining g is divided in two parts: inside ( a )  and outside the cone. In the large-N 
limit this integral is dominated completely by the equator of the sphere that lies on 
the plane perpendicular to the cone’s axis. This holds irrespective of the equator being 
inside or outside the cone. Therefore we get: 

g = l  if 4 > v /2  

g =sin 4 if 4 < ~ / 2 .  

Since the condition for which our results hold for K # 0 is satisfied in this case, we have: 

Since the fraction of the surface of the dome to the surface of the whole sphere is 
=sinN4 we conclude that if this fraction is finite in the large-N limit, the capacity is a:. 
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(c) Next we calculate the critical capacity for J constrained to a shifted sphere: 

For a < 1 clearly the origin is inside the allowed (shifted) sphere and, using ( a )  from 
above we have g = 1, C Y ,  = 2. For a > 1 denote by 4 the angle between a line joining 
the origin with the centre of the sphere, and a line passing through the origin tangentially 
to the sphere. It is easy to see that sin 4 = l /a.  Using this and (27 )  we get (valid for 
K=O only!) g =  l / a  and a , = 2 / a 2  for a >  1. We have used (25 )  even though (for 
a > 1) the surface of the sphere is not of the type assumed in the derivation; nevertheless, 
the result is correct [ 5 ] .  

( d )  We calculated expressions (22 )  and (25 )  for the case in which the Jj are 
constrained to a sphere and p N  of them are constrained to have a definite sign [3,4]. 
A rather lengthy calculation yields g = (1 - ~ / 2 ) ” ~  and a , ( K )  = (1 - p / 2 ) n : ( K ) .  

( e )  As a somewhat different application, it is easy to calculate (22 )  and (25 )  for 
the binary perceptron. In such a case one can show that one gets g = ( 2 / ~ ) ” ~  and 
aC=4/.rr which is the replica-symmetric result of [ 2 ]  (in this case, however, replica 
symmetry is broken). 

Finally let us remark that our derivation can be generalized in a number of ways. 
One straightforward generalization is the case in which the J are smoothly distributed 
on a volume, rather than a surface. In such a case the outer surfaces will dominate in 
the large-N limit. One such example is when the J take uniform values in a box that 
includes the origin (see, for example [ 6 ] ) .  On one hand the outer surface (if it is 
reasonably smooth) dominates, but from the previous discussion we see that CY, = 2 in 
all such cases. 

Discussions with I Kanter are gratefully acknowledged. JK thanks the Campomar- 
Weizmann fund for a fellowship. ED thanks Minerva for partial support. 
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